

eLoran Processing Algorithm Development for GAARDIAN Remote Probes

Mr. Chris Hargreaves Dr Paul Williams General Lighthouse Authorities of the United Kingdom and Ireland

History of GAARDIAN

- Nov 2007: Technology Strategy Board initiative
 - Part of the Department for Innovation, Universities and Skills (DIUS)
 - Promotes innovation in technology by investing in research
 - "Data Gathering in Complex Environments"
- Chronos Technology Limited (CTL) lead
 - Consortium of seven partners
- April 2008: GAARDIAN proposal submitted to TSB.
- June 2008: £2M awarded to the project

Overview of GAARDIAN SEARCH & United Kingdom and Ireland -GNSS Availability Accuracy Reliability anD Integrity **Assessment for timing and Navigation** GPS satellites GPS satellites II STI eLORAN COMMS **IDM** mesh DM mesh AIRPORT HARBOU Ordnance Survey dGPS SERVER Third party data eLORAN eLORAN USCG NANU Advisories Key Internet GPS - Global Positioning System eLORAN - Enhanced Long Range Navigation IDM - Interference Detection & Monitoring USER USER dGPS - Differential Global Positioning System

Why are the GLA Involved?

- CTL Syncwatch[™] for timing applications
 - Monitors GPS at the point of service
 - Our service provision is in the positioning domain
- Where we want GAARDIAN:
 - Harbour areas
 - Lighthouses
 - dLoran reference stations
- What we want GAARDIAN to do:
 - Assessment of GLA transmitter at Anthorn
 - Current eLoran system information
 - dLoran correction integrity check
 - Archive past data
- How...

GLA Algorithms:

- Navigation parameters
 - Accuracy
 - Availability
 - Integrity
 - Continuity
- Also...
 - Signal TOA data
- Data compression
 - 17280 data points per variable, per transmitter, per day
 - No loss of information

Accuracy

- Target of 8-20m (95%) for Harbour Entrance and Approach
 - Depends on providing ASF data and dLoran corrections.
- Repeatable Accuracy (precision) indicates where 20m can be met
 - Depends on available signals
 - Transmitter geometry
- Error Ellipses to represent accuracy
 - Give an indication of expected errors (95%)
 - Representative of transmitter geometry
 - Can be described by 3 parameters only

Error Ellipse

 $C_{ab} = \begin{pmatrix} \sigma_a^2 & 0 \\ 0 & \sigma_b^2 \end{pmatrix} \qquad R = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}$

Ellipse Parameters:

$$C_{xy} = \begin{pmatrix} \sigma_x^2 & \sigma_{xy} \\ \sigma_{xy} & \sigma_y^2 \end{pmatrix}$$

$$C_{ab} = R \cdot C_{xy} \cdot R^{T}$$

Covariance Calculation

- Covariance can be found without storing all the day's data
- Real-time updates to mean and variance:

$$\mu_{n+1} = K \cdot x_{n+1} + (1 - K) \cdot \mu_n$$

$$\sigma_{n+1}^{2} = (1-K) \cdot \left\{ K \cdot (x_{n+1} - \mu_{n+1})^{2} + \sigma_{n}^{2} \right\}$$

• Or, as a covariance matrix:

$$C_{n+1} = (1-K) \cdot \left\{ K \cdot \left(\underline{x}_{n+1} - \underline{\mu}_{n+1} \right)^T \times \left(\underline{x}_{n+1} - \underline{\mu}_{n+1} \right) + C_n \right\}$$

K

Where

Availability

- System availability target of 99.8%, (99.95% per transmitter)
- Signal availability flags:
 - SNR limits
 - ECD limits
 - Blink and cycle-selection warnings
 - Signal off-air
- System availability:
 - HPL breaches Alert Level
 - System availability statistics calculated

SNR and ECD limits

 SNR should be above -10dB for all usable signals.

Any data below this must be rejected as unusable.

- Any ECD above or below 2.5 micro-seconds is unusable.
- A chance of wrong-cycle selection occurs beyond these bounds

HPL error bounds

TOA-variances based on SNRWeighting matrix (W)

$$W = \begin{pmatrix} \sigma_1^2 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \sigma_n^2 \end{pmatrix}^{-1}$$

 Using the Design Matrix (A) of transmitter bearings (g):

 $C_{xy} = \left(A^T \cdot W \cdot A\right)^{-1}$

$$A = \begin{pmatrix} \sin(\gamma_1) & \cos(\gamma_1) \\ \vdots & \vdots \\ \sin(\gamma_n) & \cos(\gamma_n) \end{pmatrix}$$

Integrity

- A measure of the trustworthiness of the system
 - Expressed as the probability of HMI
 - Target 10⁻⁵ (equivalent to one fix in 15 hours)
- GAARDIAN is not intended as an Integrity Monitor for eLoran
 - Depends on local radio noise environment
 - Position validation / RAIM is the job of a user's receiver
- Integrity messages to be carried by the Loran Data Channel
 - Generated by dLoran system
 - Will only apply to users of maritime dLoran

Continuity

- The probability that, if the system is available, it will continue to be available for a period of time
- Our target is 99.97% over 15 minutes
- GAARDIAN will generate continuity parameters based on
 - System availability
 - Mean Time Between Outages (MTBO)
- Parameters will improve in accuracy the longer the probes are in operation.

Additional Data: Time Of Arrival (TOA) Variation

- Was done in the US by the USCG (Figure)
- Has not been done in Europe
- The data will be needed for dLoran projects
- Measure TOA variations
 - Diurnal
 - Seasonal
 - Spatial correlation

Spectral Model

Spectral components of data:

$$X_{k} = \sum_{j=1}^{n} x_{j} e^{-2\pi i (j-1)(k-1)/n}$$

 Reconstructing m spectral lines:

$$y_j = \frac{1}{n} \sum_{k=1}^m X_k e^{2\pi i (j-1)(k-1)/n}$$

 Model accuracy is given by the residuals:

$$\sigma^2 = \frac{1}{n} \sum_{j=1}^{n} (x_j - y_j)^2$$

Real-time GAARDIAN

- All well and good as a passive monitoring network
- GAARDIAN server to provide real-time alerts:
 - Interruption of eLoran signals
 - Interference / Jamming events
 - Integrity risks
- Current view from the probes
 - Can query probes from the server
 - Get instant feedback on the state of eLoran at a location
 - Download data from the probes on request.
 - Use exponential averaging...

Real-Time Updates

- Mean: $\mu_n = \alpha \cdot x_n + (1 \alpha) \cdot \mu_{n-1}$
- Variance: $\sigma_n^2 = \alpha \cdot (x_n \mu_n)^2 + (1 \alpha) \cdot \sigma_{n-1}^2$

GLA Algorithm Implementation

- Our dLoran Station is similar to a GAARDIAN Probe
- We can implement the algorithms to assess their function
- dLoran Station will now be able to produce:
 - Daily spectral plot
 - Real-time parameter updates
 - Error ellipse parameters
 - Alert flags
 - Availability counters

GLA Algorithm Implementation

Case Study: Local SNR Effect

- Periodic lows in SNR were observed
- 24 and 48-line spectral models showed a clear drop in SNR of 2-3 dB every hour

Case Study: Local SNR Cause

Case Study: Local SNR Cause

Wed 2 Sep 2009

06:36 07:35

08:29

09:22

10:29

11:26

12:26

13:26

14:26

15:26

16:26

17:21

17:55

18:23

Services (Show Depart Arrive (05:51 06:14

06:14 06:57

07:56

08:55

09:44

10:56

11:53

12:53

13:53

14:53

15:53

16:53

17:47

18:19

18:46

Correlation with train timetable:

Outward Journey			Wed 2 Ser	o 2009		Retur	n Journey lay next day⊠
ing all 22	services)		Services (Showing all 22 services)				
hanges	Duration	Notes	Depart	Arrive	Changes	Duration	Notes
0	0:23hrs	0	05:37	05:58	0	0:21hrs	6
0	0:21hrs	0	06:22	06:42	0	0:20hrs	0
0	0:21hrs	0	07:08	07:29	0	0:21hrs	6
0	0:26hrs	0	08:00	08:21	0	0:21hrs	6
0	0:22hrs	6	09:00	09:21	0	0:21hrs	6
0	0:27hrs	0	10:00	10:21	0	0:21hrs	6
0	0:27hrs	6	11:00	11:21	0	0:21hrs	6
0	0:27hrs	6	12:00	12:21	0	0:21hrs	6
0	0:27hrs	0	13:00	13:21	0	0:21hrs	0
0	0:27hrs	0	14:00	14:21	0	0:21hrs	0
0	0:27hrs	0	15:00	15:21	0	0:21hrs	0
0	0:27hrs	0	16:05	16:26	0	0:21hrs	0
0	0:26hrs	0	17:00	17:21	0	0:21hrs	0
0	0:24hrs	0	17:53	18:14	0	0:21hrs	0
0	0:23hrs	0	18:25	18:46	0	0:21hrs	0
	-	0	18:53	19:14	0	0:21hrs	0
verage		0	19:28	19:49	0	0:21hrs	0
al model		0	20:00	20:21	0	0:21hrs	0
	-	0	20:33	20:55	0	0:22hrs	6
		0	21:00	21:21	0	0:21hrs	0
•		0	21:54	22:15	0	0:21hrs	6
i		6	23:05	23:26	0	0:21hrs	0
			1				

Conclusion

- Algorithms have been designed to monitor eLoran
 - Accuracy
 - Availability
 - Integrity
 - Continuity
- Additional eLoran TOA data-gathering
- Adaptive modelling of data, and on-the-fly system state updates
- Test-bed implementation on dLoran station
- The trains are running on time!

Future Work

- Algorithm Implementation and Testing:
 - Algorithm operation
 - Adaptability and stability
 - Additional Algorithms to implement
- Work with other partners to create first GAARDIAN prototype
- GAARDIAN to become a commercial reality by the end of 2011
- Future projects to include GAARDIAN data
 - European eLoran propagation study
 - Future differential-Loran projects
 - More study of eLoran...

Thank you!

Chris Hargreaves Dr Paul Williams General Lighthouse Authorities Trinity House The Quay Harwich <u>chris.hargreaves@gla-rrnav.org</u> <u>paul.williams@gla-rrnav.org</u> +44-(0)1255-245146

